Новые многочастотные наблюдения круговой поляризации АГЯ

Витрищак В.М., Gabuzda D.C., Algaba J.C., Расторгуева Е.А. и др.

Поляризация и сфера Пуанкаре

• 59 АГЯ, из них 41 одновременно на частотах 15, 22 и 43 ГГц и 18 – на 15 ГГц.

• Для 8 источников КП обнаружена впервые, для 9 источников подтверждены более ранние результаты (Homan,Attridge&Wardle 2001, Homan&Lister 2006, Витрищак&Габузда 2007).

• Для всех 8 источников, в которых на 15ГГц была обнаружена круговая поляризация как и в наблюдениях MOJAVE первой эпохи (Homan&Lister 2006), знак круговой поляризации находится в согласии.

• Для 11 источников КП была обнаружена одновременно двух или трех частотах

 Из 9 АГЯ, для которых круговая поляризация была обнаружена одновременно на
частотах 15 и 22ГГц, 8 показали один и тот же знак поляризации. Из 7 источников, для которых круговая поляризация была обнаружена
одновременно на
частотах 22 и 43ГГц, в 5 случаях знак круговой поляризации на этих двух частотах был различным.

1633+382 15 и 22 ГГц

V_{пик}=-8.5 мЯн/ДН I_{max}=2629 мЯн/ДН V_{пик}=-23.2 мЯн/ДН I_{max}=2686 мЯн/ДН

2230+114 15 и 22 ГГц

Relative RA, milliarcseconds

Источник	т _с 15 ГГц	т _с 22ГГц	т _с 43 ГГц	RM
0420-014				+300±200
0745+241				-1780±350
0859+470				-410±170
0953+254				+11630±720
1055+018	+0.47±0.10	+0.25±0.17	-0.70, +0.47 ±0.21	-
1510-089		+0.52±0.19	-2.39±0.40	+1850±120
1637+574				
1739+522				
1954+513				
3C279	+0.30±0.09	+0.17±0.15	-1.55±0.16	-4370±300

1055+018 15 и 22 ГГц

1055+018 43 ГГц

1510-089 22 и 43 ГГц

Источник	т _с 15ГГц	т _с 22ГГц	т _с 43ГГц	RM
0133+476	-0.32±0.09		-0.50±0.19	-
0138-097				-4580±280
0814+425				+620±90
1156+295				+4500±250
1611+343				-1110±430
1652+396				+17400±700
2145+067	-0.45±0.09	-0.29±0.13		-
2155-152				-1280±400
2251+158	+0.16, -0.11 ±0.10	-0.23±0.12	+0.29±0.18	+1280±150
OJ287	-0.19±0.08	-0.20±0.13	+0.45±0.27	-2530±60

ОЈ287 15 и 22 ГГц

2251+158 15 и 22 ГГц

2145+067 15 и 22 ГГц

Эксперимент 05.03.2003 г.

Источник	т _с 15ГГц	т _с 22ГГц	т _с 43ГГц	RM
0735+178				
0823+033	+0.29±0.09			-
3C279	+0.86±0.10	+0.60±0.25	+0.96±0.37	-2360±120
1147+245				-
1219+285				
1334-127	+0.25±0.09	+0.37±0.24	+0.62±0.29	-
1538+149				-
OJ287	-0.10±0.08			-
1732+389				
0048-097				
0138-097				
0256+075				

1334-127 15, 22 и 43 ГГц

3C279 15 и 22 ГГц

3С279 43 ГГц

V_{пик}=+53.6 мЯн/ДН I_{max}=4439 мЯн/ДН

Эксперимент 07.08.2002 г.

Источник	т _с 15ГГц	RM
1538+149		
1749+096	-0.22±0.08	+2860±290
1732+389		
1418+546		+410±60
2254+074		+820±90
2131-021		-
BL Lac		+6100±370
1823+568		+400±95
1156+295	-0.29±0.11	
3C279	+0.16±0.11	

Синхротронное Излучение

ф – питч-угол частиц

θ – угол между векторомполя и лучом зрения

Излучение идет в малый телесный угол с раствором ~1/ү

В случае изотропного распределения электронов по импульсам,

$$m_c = -C_0(s) \operatorname{ctg} \theta \left(\frac{\nu_{B_\perp}}{\nu}\right)^{\frac{1}{2}},$$

В электрон-позитронной плазме степень круговой поляризации = 0

Уравнения переноса излучения

$$\begin{bmatrix} \frac{dI}{ds} = \eta_I - \kappa_I I - \kappa_Q Q - \kappa_V V \\ \frac{dQ}{ds} = \eta_Q - \kappa_I Q - \kappa_Q I - \kappa_F U - \kappa_F U \\ \frac{dU}{ds} = \kappa_I U - \kappa_F Q - \kappa_C V \\ \frac{dV}{ds} = \eta_V - \kappa_I V - \kappa_V I + \kappa_F Q - \kappa_C V \\ \frac{dV}{ds} = \eta_V - \kappa_I V - \kappa_V I + \kappa_F Q - \kappa_C U \\ \frac{dV}{d\tau} = \epsilon_V J - \zeta_I V - \zeta_V I + \zeta_C U \\ \end{bmatrix}$$

В случае изотропного распределения невозмущенных частиц, $\eta_{U^{*}}~k_{U}~\&~h_{\rm Q}$ = 0

Продольная структура круговой поляризации

Геометрия поля и круговая поляризация

Фарадеевская Конверсия II

 $0.001\Gamma c,45^{\circ}, \gamma_{rad}/\gamma_{min}=3,5,7,10,15$

 $0.1\Gamma c,45^{\circ}, \gamma_{rad}/\gamma_{min}=2,3,5,7,10$

Численное
решение
уравнений
переноса

TINGDONG CHEN

Простейшая модель спирального поля

60° 0.8 0.6 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.4 -0.6

Впервые получены результаты для круговой поляризации излучения на РСДБ масштабахна частотах 22 и 43ГГц. Для 11 источников получены данные КП одновременно на нескольких частотах.

Максимальная степень обнаруженной КП достигаетнескольких процентов, характерная - десятые доли процента.

Для некоторых источников обнаружена составляющая КП, постоянная на временных масштабах в несколько лет, что может свидетельствовать в пользу существования стабильного направленного магнитного поляв изучаемых областях (doman& Wardle, 1999). На фоне постоянной компоненты было обнаружено изменение уровня сигнала, что говорит так же о переменности КП

Если верна синхротронная модель излучения КП, то выброс состоит из нормальнойе-р плазмы. Для этого механизма является приемлемым широкий диапазон моделей магнитного поля с напряженностями упорядоченной компоненты порядка 0.1-1Гс. Была обнаружена возможная корреляция междуядерными мерами вращения и КП, которая может быть объяснена в рамках синхротронного механизма.

Для модели конверсии могут быть получены высокие степени круговой поляризации даже при слабых полях. Важна геометрия поля, состав плазмы и функция распределения частиц.

В рамках механизма конверсии и простейшей модели спирального полянаблюдается