РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ ИМ. П. Н. ЛЕБЕДЕВА

На правах рукописи

УДК 524.354.4

Теплых Дарья Андреевна

ПОИСК И ИССЛЕДОВАНИЕ РАДИОИЗЛУЧЕНИЯ ОТ АНОМАЛЬНЫХ ПУЛЬСАРОВ НА НИЗКИХ ЧАСТОТАХ

01.03.02 – астрофизика и звёздная астрономия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Москва

2011

Работа выполнена в филиале «Пущинская радиоастрономическая обсерватория АКЦ ФИАН» учреждения Российской академии наук Физического института им. П. Н. Лебедева РАН (ПРАО АКЦ ФИАН)

Научный руководитель: доктор физико-математических наук В. М. Малофеев, ПРАО АКЦ ФИАН

Официальные оппоненты:

доктор физико-математических наук М. В. Попов, АКЦ ФИАН доктор физико-математических наук Ю. А. Шибанов, ФТИ им. Иоффе РАН

Ведущая организация: Институт космических исследований РАН (ИКИ РАН)

Защита состоится «<u>24</u>» <u>июня</u> 2011 года в <u>15</u> час. <u>00</u> мин.

на заседании диссертационного совета Д002.023.01 Физического института им. П. Н. Лебедева РАН (ФИАН) в конференц-зале Института космических исследований РАН (ИКИ РАН) по адресу: г. Москва, ул. Профсоюзная, д. 84/32, ИКИ РАН, подъезд №2.

С диссертацией можно ознакомиться в библиотеке Физического института им. П. Н. Лебедева РАН по адресу: 119991, Москва, Ленинский проспект, д. 53., с авторефератом диссертации — на сайте http://www.asc-lebedev.ru

Отзывы направлять по адресу: 119991, г. Москва, Ленинский проспект, д. 53, ФИАН (АКЦ), диссертационный совет Д002.023.01

Автореферат разослан « <u>24</u> » <u>мая</u> 2011 года.

Ученый секретарь диссертационного совета,

д. ф.-м. н. Ю. А. Ковалёв

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Большинство пульсаров обнаруженных к настоящему времени являются радиопульсарами (>80%), второй по численности класс объектов — аккреционные рентгеновские пульсары, входящие в тесные двойные системы, последними в этом списке стоят одиночные «радиотихие» нейтронные звезды, излучающие в рентгеновском и гамма диапазонах. Всего на текущий момент обнаружено более 1800 пульсаров [1]. Группа одиночных «радиотихих» нейтронных звезд сформировалась относительно недавно [2], в ее составе несколько типов источников: пульсары типа Геминги; источники с повторяющимися мягкими гамма-всплесками (SGRs – Soft gamma repeaters); аномальные рентгеновские пульсары (AXPs – Anomalous X-ray pulsars); центральные компактные объекты в остатках вспышек сверхновых (CCOs in SNRs – central compact objects in supernova remnants); слабые рентгеновские изолированные нейтронные звезды (XDINSs – X-ray dim isolated neutron stars); радиотранзиенты (RRATs – rotating radio transients). Эти источники интересны как новый класс объектов и их исследование важно для понимания феномена пульсара, а главное — его механизмов излучения. Не смотря на большое количество предложенных моделей, до сих не сложилось единой картины понимания природы аномальных пульсаров.

Вышеперечисленные группы аномальных пульсаров мало исследованы или вовсе не исследованы в радиодиапазоне. Необходимость наблюдений пульсаров в метровом диапазоне длин волн обуславливается особенностями их спектров, а именно наличием максимума, так как большинство наблюдаемых низкочастотных завалов в спектрах пульсаров начинается в районе частоты 100 МГц [3-5]. Кроме того, у пульсаров с крутыми спектрами максимум также в районе частоты 100 МГц и зачастую такие пульсары наблюдаются только на низких частотах [6]. Высокая

чувствительность наших наблюдений связана с наличием Большой синфазной антенной ФИАН с эффективной площадью около 30000 м², которая является пока самой крупной в мире антенной в метровом диапазоне длин волн и является хорошим инструментом для исследования пульсаров [7, 8].

Имеющийся в настоящее время дефицит наблюдений пульсаров на связанный низких частотах, cотсутствием В других странах чувствительных радиотелескопов, обеспечивает многим нашим исследованиям мировой приоритет. С вводом в строй в Европе новой высокочувствительной решетки LOFAR [9], работающей в диапазоне 10 – 240 МГц, конкуренция в этом диапазоне значительно возрастет.

Цели и задачи исследования

Основной задачей работы является поиск и исследование радиоизлучения от аномальных пульсаров в метровом диапазоне длин волн с целью получения новых наблюдательных данных о механизме их радиоизлучения и эволюции. В работе исследовались аномальные рентгеновские пульсары (AXP), одиночные нейтронные звезды со слабым рентгеновским излучением (XDINS), а также радиотранзиенты (RRAT).

Научная новизна

В диссертации получен ряд новых результатов. Впервые обнаружено радиоизлучение от трех представителей класса «радиотихих» пульсаров. Вычислены основные характеристики радиоизлучения у четырех рентгеновских пульсаров, получены оценки расстояния до исследуемых объектов независимым способом. Подтверждено наличие радиоизлучения от АХР ХТЕ J1810-197 на частоте 62 МГц.

Достоверность результатов

Представленные получены В диссертации результаты cиспользованием известных апробированных методов наблюдений, обработки и анализа данных. Регистрация радиоизлучения от аномального XTE J1810-197 рентгеновского пульсара на частоте МГц, более обнаруженного другими авторами частотах, на высоких подтверждает способность наших инструментов и методов к регистрации сигналов подобного рода.

На опубликованные работы, включающие основные результаты диссертации, к настоящему времени имеется более 40 положительных ссылок, в основном, в ведущих журналах, включая зарубежные (например: Istomin Ya. N. & Sobyanin D. N., Astron. Lett., 33, 660 (2007); Malov I. F. & Machabeli G. Z., Ap&SS, 308, 467 (2007); Popov S. B., Turolla R., Possenti A., MNRAS, 369, L23 (2006); den Hartog P. R., Kuiper L., Hermsen W., Ap&SS, 308, 647 (2007); Rea N., Torres M. A. P., Jonker P. G. et al., MNRAS, 379, 1484 (2007); Motch C., Pires A. M., Haberl F., Schwope A., Ap&SS, 308, 217 (2007); Kondratiev V. I., Burgay M., Possenti A., AIP, 983, 348 (2008); Zane S., Mignani R. P., Turolla R. et al., ApJ, 682, 487 (2008); Popov S., PPN, 39, 1136 (2008); Kondratiev V. I., McLaughlin M. A., Lorimer D. R, ApJ, 702, 692 (2009); Trъmper J., ASPC, 424, 113 (2010); Stappers B. W., Hessels J. W. T., Alexov A. et al., AAp, in press, (2011); Danilenko A. A., Zyuzin D. A., Shibanov Yu. A., Zharikov S. V., MNRAS, in press, (2011)).

Практическая значимость

Обнаружение радиоизлучения от исследуемых групп объектов представляет несомненный интерес для исследования аномальных пульсаров и пульсаров в целом. Излучение в радиодиапазоне накладывает ограничения на существующие модели, описывающие механизмы излучения пульсаров, а также требует поиска других механизмов, объясняющих это явление. Результаты работы используются ведущими наблюдателями и теоретиками во всем мире, например: Manchester R., Trumper J., Haberl F., Zane S., Mignani R., Turolla R., Stappers B., Lorimer D., McLaughlin M., Istomin Ya., Machabeli G., Malov I., Popov S., Shibanov Yu.

Основные результаты, выносимые на защиту

- 1. Обнаружено радиоизлучение в метровом диапазоне длин волн у аномального рентгеновского пульсара (АХР) 4U 0142+61 и двух изолированных нейтронных звезд со слабым рентгеновским излучением (XDINS) 1 RXS J1308+21 и J2143+06. Измерены или оценены основные параметры: период и его производная, мера дисперсии и расстояние, плотность потока и средний профиль на нескольких частотах метрового диапазона, а также интегральная радиосветимость.
- 2. Впервые в радиодиапазоне получены средние профили АХР 1E2259+586, радиоизлучение от которого также обнаружено в ПРАО, на двух частотах 111 и 87 МГц, измерены период вращения и его производная, а также получены оценки спектрального индекса и интегральной радиосветимости.
- 3. Проведено сравнение основных параметров четырех радиообъектов с измерениями в рентгеновском диапазоне и выявлено,

- что главное различие заключается в длительности среднего профиля, а для двух XDINS еще и в наличии сильных временных флуктуаций радиоизлучения.
- 4. Подтверждено наличие радиоизлучения от AXP XTE J 1810-197, получен средний профиль импульса на частоте 62 МГц и измерена плотность потока.

Публикации и личный вклад автора

Результаты, изложенные в диссертации, опубликованы в 12 работах.

- 1. Malofeev, V. M.; Malov, O. I.; Teplykh, D. A. "Discovery of Radio Emission from Two Anomalous X-ray Pulsars" IAU Symposium no. 218, 2004, p.261;
- 2. Малофеев В. М., Малов О. И., Теплых Д. А., Тюльбашев С. А., Тюльбашева Г. Э. «*Радиоизлучение от двух Аномальных рентгеновских пульсаров*» Астрономический журнал, 2005, Т. 82, №3, с.273-280;
- 3. Malofeev, V. M.; Malov, O. I.; Teplykh, D. A. "Pulsed Radio Emission From Two XDINS" IAU, JD02, #31, 2006;
- 4. Malofeev, V. M.; Malov, O. I.; Teplykh, D. A. "*Radio Emission from Anomalous X-ray Pulsars*" Chinese Journal of Astronomy and Astrophysics, Supplement, 2006, V.6, Issue S2, p.68-73;
- 5. Malofeev, V. M.; Malov, O. I.; Teplykh, D. A.; Logvinenko, S. V.; Litvinov, I. I.; Popov, S. B. "Discovery of radio emission from X-ray pulsar XDINS 1RXS J214303.7+065419" The Astronomer's Telegram, #798, 2006;
- 6. Malofeev, V. M.; Malov, O. I.; Teplykh, D. A. "Radio emission from AXP

- and XDINS" Astrophysics and Space Science, 2007, V. 308, Issue 1-4, pp. 211-216;
- 7. Теплых Д. А., Малофеев В. М., Малов О. И. *«Радиоизлучение от АХР и XDINS»*, Радиофизика и радиоастрономия, Т.13, №3, 2008с.109-113,;
- 8. Малофеев В. М., Теплых Д. А., Малов О. И. *«Обнаружение радиоизлучения от АХР 4U 0142+61»* Астрономический журнал, Том 87, № 11, с.1082-1086, 2010.
- 9. Malofeev V. M., Teplykh D. A., Logvinenko S. V. "New observation of radio emission of two AXP at low frequencies", in the book: «Pulsar conference 2010» Publ.: The University of Cagliari, Chia, 2010, p.15; а также
 - Малофеев В. М., Теплых Д. А., Логвиненко С. В., «*Радиоизлучение от трех АХР на низких частотах*», Астрономический журнал, 2011 (в печати);
- 10. Teplykh D. A. "*Radio emission from RRAT J1819-14 at low frequency*", B in the book: «IV Gamow International Conference», Publ.: The National University of Odessa, Odessa, p. 30, 2009;
- 11. Teplykh D. A., Malofeev V. M., Logvinenko S. V. "*Radio emission from RRAT J1819-14 at 111 MHz*". in the book: «16th Open Young Scientists' Conference», Publ.: Taras Shevchenko National University of Kyiv, Kyiv, 2009, p.25;
- 12. Теплых Д. А., Родин А. Е., Малофеев В. М., Логвиненко С. В. *«Новые данные по радиоизлучению двух XDINS на низких частотах»* Сборник трудов XIII Школы молодых ученых «Актуальные проблемы физики», Москва, Изд.: ФИАН, 2010, с. 211 212.

Во всех результатах, вынесенных на защиту, вклад автора является существенным. Наблюдения на БСА ФИАН, вычисление плотностей потоков, вычисление периодов и производных периодов, анализ и интерпретация полученных данных выполнены совместно с сотрудниками Лаборатории плазменных процессов в астрофизике ПРАО АКЦ ФИАН. Обработка результатов наблюдений велась самостоятельно с помощью пакета программ, созданных сотрудниками ПРАО ФИАН Маловым О. И., Тюльбашевым С. А., Логвиненко С. В., Шабановой Т. В.

Апробация работы

Основные результаты, полученные в диссертации, докладывались на научных сессиях АКЦ ФИАН, а так же на следующих российских и международных конференциях:

- Школа-семинар молодых радиоастрономов «Техника и методы радиоастрономических исследований» (Пущино, 2002);
- Всероссийская конференция «Астрофизика высоких энергний сегодня и завтра» (Москва, 2002, 2008, 2009, 2010)
- Международная студенческая научная конференция «Физика космоса» (Екатеринбург, 2003);
- Всероссийская конференция «Физика нейтронных звезд» (Санкт-Петербург, 2005)
- Конференция молодых европейских радиоастрономов (Дальфсен, 2006);
- Конференция молодых европейских радиоастрономов (Бордо, 2007);
- Гамовская летняя астрономическая школа «Астрономия на стыке наук: астрофизики, радиоастрономии, космологии и астробиологии» (Одесса, 2007, 2008, 2009, 2010);
- Всероссийская астрономическая конференция (Казань, 2007);

- Рабочее совещание «Низкочастотное исследование пульсаров» (Лейден,
 2008);
- Конференция молодых европейских радиоастрономов (Порту, 2009);
- Открытая конференция молодых ученых «Астрономия и физика космоса» (Киев, 2009, 2010);
- Конференция молодых ученых «Фундаментальные и прикладные космические исследования» (Москва, 2010)
- Всероссийская астрономическая конференция (Нижний Архыз, 2010);
- Международная конференция «Пульсар-2010» (Киа, 2010);
- Школа молодых ученых «Актуальные проблемы физики» (Звенигород, 2010);
- Российско-финский симпозиум по радиоастрономии (Пущино, 2010).

Структура и объем диссертации

Диссертация состоит из введения, трех глав, заключения и списка литературы. Объем диссертации составляет 117 страниц, включая 46 рисунков и 7 таблиц. Список цитируемой литературы состоит из 115 наименований.

СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Bo краткий обзор введении лан современного состояния исследований одиночных «радиотихих» нейтронных звезд И Кратко рассмотрены наблюдательные радиотранзиентов. основные особенности всех групп «аномальных» пульсаров и теоретические модели, описывающие природу этих объектов. Обоснована актуальность темы диссертации, представлены основные цели работы, научная новизна, практическая значимость и основные результаты, выносимые на защиту.

В Главе I дается описание наблюдательной базы: радиотелескопов и приемной аппаратуры, используемых при наблюдениях пульсаров. Приводится методика обработки результатов наблюдений. Для обработки наблюдения слабых пульсаров была разработана специальная методика, позволяющая увеличить отношения сигнал/шум и выделить слабый сигнал. Методика основывается на отборе визуально видимых импульсов при вторичной обработке. Сформулировано несколько критериев подтверждающих достоверность полученных импульсов и позволяющих распознать ложный сигнал.

Глава II посвящена наблюдению аномальных рентгеновских пульсаров в радиодиапазоне. Представлены результаты обнаружения и исследования радиоизлучения от трех объектов этой группы в ПРАО в метровом диапазоне длин волн (1Е 2259+586, 4U 0142+61 и ХТЕ J1810-197). Приведены результаты наблюдения двух АХР (ХТЕ J1810-197 и 1Е 1547.0-5408) на более высоких частотах, опубликованные другими авторами. Для исследуемых аномальных рентгеновских пульсаров получены профили импульсов и динамические спектры на частотах 40, 62 и 111 МГц. Представлены наблюдаемые и вычисленные параметры радиоизлучения от АХР на частоте 111 МГц. Проведено сравнения с

данными наблюдений в рентгеновском диапазоне. Главное различие между радио и рентгеновским излучением в том, что интегральный профиль в радиодиапазоне является существенно более узким. Получены независимые оценки расстояния до пульсаров, которые находится в пределах интервалов расстояний, определенных другими методами.

Обнаружение радиоизлучения OT четырех AXP, вместе обнаружением в радиодиапазоне одного источника мягких гамма всплесков (SGR) 1900+14 демонстрирует, что, по крайней мере, часть AXP и SGR не являются «радиотихими» объектами. Дополнительный аргумент в пользу общей природы радиоизлучения «нормальных» пульсаров и групп АХР – SGR получен с открытием радиопульсара (J1847-0130) с большими значениями периода (P = 6.7 с) и производной периода ($\dot{P} = 1.3 < 10^{-12}$ с/с), такими же как у AXP и SGR. Таким образом, сложившаяся ситуация приводит к необходимости или пересмотра механизмов радиоизлучения в модели магнетара, или к рассмотрению других моделей для AXP и SGR без привлечения сверхсильных магнитных полей.

В Главе III рассматриваются наблюдения сразу двух групп одиночных пульсаров: слабые рентгеновские изолированные нейтронные звезды (XDINS) или «Великолепная семерка» и радио транзиентные источники (RRAT) открытые по отдельным радиовспышкам. Эти объекты имеют схожие значения периодов и производных периодов, а на диаграмме $P - \dot{P}$ занимают одну область между обычными радиопульсарами и магнетарами. К тому же рентгеновский спектр одного из RRAT (J1819-14) похож на спектры XDINS, и имеет такую же широкую линию поглощения. В Главе III представлены результаты по обнаружению радиоизлучения у двух XDINS (1RXS J130848.6+212708 и 1RXS J214303.7+065419) и наблюдению одного RRAT J1819-14 на частоте 111 МГц. Для XDINS получены профили импульсов и динамические спектры на частотах 42, 62 и 111 МГц. Вычислены плотности потоков, радиосветимости, даны оценки

расстояния до этих пульсаров. Проведено сравнение с данными рентгеновских наблюдений. Основное отличие, так же как и в случае АХР, состоит в существенном различии длительности импульса. Поиск радиоизлучения от XDINS активно проводился на частотах от 800 МГц и выше, но на сегодняшний момент не было зарегистрировано ни периодического излучения, ни отдельных вспышек. По всей видимости, эти пульсары имеют крутой спектр, такой как у пульсара Геминга, где спектральный индекс $\alpha \ge -4$.

Кроме того, получены профиль импульса и динамический спектр для RRAT J1819-14, вычислена пиковая плотность потока и отношение наблюдаемого количества импульсов к общему времени наблюдения, сделана оценка спектрального индекса. Возможно, на низких частотах этот пульсар наблюдается чаще.

В заключении кратко сформулированы результаты диссертационной работы.

Список литературы

- Manchester R.N., Hobbs G.B., Teoh A., Hobbs M. // Astrophys. J. 2005.
 V. 129. P. 1993
- 2. Попов С.Б., Прохоров М.Е. // Труды ГАИШ. 2003. Т. LXXII
- 3. Izvekova V.A., Kuzmin A.D., Malofeev V.M., Shitov Yu.P. // Astrophys. Spase Sci. 1981. V. 488. P. 364.
- 4. Малофеев В.М. Диссертация на соискание уч. ст. докт. ф.-м. н. М.: ФИАН, 1999.
- 5. Малофеев В.М., Малов И.Ф.// Астрон. ж. 1980. Т. 57. С. 90.
- 6. Malofeev V.M., Malov O.I. // Nature. 1997. V. 389. P. 697.
- 7. Виткевич В.В., Глушаев А.А., Илясов Ю.П. и др. // Изв. ВУЗов. Радиофизика. 1979. Т. 19. С. 1594.
- 8. Кутузов С.М., Азаренков Ю.И., Алексеев И.А и др. // Труды ФИАН. 2000. Т. 229. С. 3.
- 9. Stappers B. W., Hessels J. W. T., Alexov A. et al. // Astron. Astrophys. 2010. V. 530, id.A80.